<table>
<thead>
<tr>
<th>Radiation 1</th>
<th>Radiation 2</th>
<th>Planets 1</th>
<th>Planets 2</th>
<th>Planets 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q $100</td>
<td>Q $100</td>
<td>Q $100</td>
<td>Q $100</td>
<td>Q $100</td>
</tr>
<tr>
<td>Q $200</td>
<td>Q $200</td>
<td>Q $200</td>
<td>Q $200</td>
<td>Q $200</td>
</tr>
<tr>
<td>Q $300</td>
<td>Q $300</td>
<td>Q $300</td>
<td>Q $300</td>
<td>Q $300</td>
</tr>
<tr>
<td>Q $400</td>
<td>Q $400</td>
<td>Q $400</td>
<td>Q $400</td>
<td>Q $400</td>
</tr>
<tr>
<td>Q $500</td>
<td>Q $500</td>
<td>Q $500</td>
<td>Q $500</td>
<td>Q $500</td>
</tr>
</tbody>
</table>
What does the phenomenon of diffraction demonstrate?

a. The polarization of light waves
b. The wave nature of light
c. The particle nature of light
d. The process of ionization
What does the phenomenon of diffraction demonstrate?

a. The polarization of light waves
b. The wave nature of light
c. The particle nature of light
d. The process of ionization
The two forms of electromagnetic radiation that penetrates best the Earth atmosphere are:

a. X-rays and gamma rays
b. Ultraviolet and visible light
c. Visible and radio waves
d. Infrared and microwaves
The two forms of electromagnetic radiation that penetrates best the Earth atmosphere are:

a. X-rays and gamma rays
b. Ultraviolet and visible light
c. Visible and radio waves
d. Infrared and microwaves
The star Rigel in the constellation of Orion has a blue color, while the star Betelgeuse has a red color. What can you conclude about these two stars?

a. Rigel is hotter than Betelgeuse
b. Rigel is cooler than Betelgeuse
c. Rigel is more distance than Betelgeuse
d. Rigel is closer than Betelgeuse
The star Rigel in the constellation of Orion has a blue color, while the star Betelgeuse has a red color. What can you conclude about these two stars?

a. Rigel is hotter than Betelgeuse
b. Rigel is cooler than Betelgeuse
c. Rigel is more distance than Betelgeuse
d. Rigel is closer than Betelgeuse
$400 Question Ch3

What is true of a blackbody? Draw the bb curve for two stars of different temperatures.

a. It appears black to us, regardless of its temperature
b. Its energy is not a continuum
c. Its energy peaks at a wavelength determined by its temperature
d. If its temperature doubled, the peak in its curve would move to longer wavelengths.
What is true of a blackbody? Draw the bb curve for two stars of different temperatures.

a. It appears black to us, regardless of its temperature
b. Its energy is not a continuum
c. Its energy peaks at a wavelength determined by its temperature
d. If its temperature doubled, the peak in its curve would move to longer wavelengths.
According to the Stephan-Boltzmann law, if the temperature of the Sun were to increase by a factor of two, its energy output would
a. Increase by a factor of sixteen
b. Increase by a factor of four
c. Decrease by half
d. Increase by a factor of two
e. Remain the same
According to the Stephan-Boltzmann law, if the temperature of the Sun were to increase by a factor of two, its energy output would

a. Increase by a factor of sixteen
b. Increase by a factor of four
c. Decrease by half
d. Increase by a factor of two
e. Remain the same
From lab measurements, we know that a particular line formed by hydrogen appears at a wavelength of 121.6 nm. The spectrum of a particular star shows this line at 121.8 nm. What can we conclude?

a. The star is moving toward us
b. The star is moving away from us
c. The star is getting hotter
d. The star is getting colder
From lab measurements, we know that a particular line formed by hydrogen appears at a wavelength of 121.6 nm. The spectrum of a particular star shows this line at 121.8 nm. What can we conclude?

a. The star is moving toward us
b. The star is moving away from us
c. The star is getting hotter
d. The star is getting colder
$200 Question Ch4

An incandescent light (glowing tungsten filament) produces:
a. An emission spectrum, with bright lines due to ionized tungsten
b. An absorption spectrum, with dark lines due to the solid filament
c. A continuum, with bright tungsten lines added.
d. A continuous spectrum, with the peak giving the temperature of the filament.
An incandescent light (glowing tungsten filament) produces:
a. An emission spectrum, with bright lines due to ionized tungsten
b. An absorption spectrum, with dark lines due to the solid filament
c. A continuum, with bright tungsten lines added.
d. A continuous spectrum, with the peak giving the temperature of the filament.
The Orion Nebula, M-42, is a hot, thin cloud of glowing gas, so its spectrum is:

a. A continuum, strongest in the color red
b. Emission, a few bright lines against a dark background
c. Absorption, a few dark lines in a bright continuum
d. A continuum, but with bright and dark lines mixed in
The Orion Nebula, M-42, is a hot, thin cloud of glowing gas, so its spectrum is:

a. A continuum, strongest in the color red
b. Emission, a few bright lines against a dark background
c. Absorption, a few dark lines in a bright continuum
d. A continuum, but with bright and dark lines mixed in
$400 Question Ch4

Explain the 3 different types of spectrum (continuum, absorption and emission). How are they produced?
$400 Answer Ch4

A: white dwarf (continuous spectrum)

B: Distant star through gas (absorption spectrum)

C: Nothing

D: Gas expelled (emission spectrum)
What information about an object can be determined by observing its spectrum?

a. Its temperature
b. Its radial motion
c. Its chemical composition
d. All of the above
What information about an object can be determined by observing its spectrum?

a. Its temperature
b. Its radial motion
c. Its chemical composition
d. All of the above
100 Question from Planets 1

Rank the four terrestrial planets in order of size from small to large

A) Mercury, Venus, Earth, Mars
B) Mercury, Mars, Venus, Earth
C) Mercury, Mars, Earth, Venus
D) Mars, Mercury, Venus, Earth
Rank the four terrestrial planets in order of size from small to large:

A) Mercury, Venus, Earth, Mars
B) Mercury, Mars, Venus, Earth
C) Mercury, Mars, Earth, Venus
D) Mars, Mercury, Venus, Earth
Under what circumstances can differentiation occur in a planet

A) The planet must have a rocky surface
B) The planet must be made of metal and rock
C) The planet must have volcanoes and plate tectonics
D) The planet must have a molten interior
$200 Answer from Planets 1

Under what circumstances can differentiation occur in a planet

A) The planet must have a rocky surface
B) The planet must be made of metal and rock
C) The planet must have volcanoes and plate tectonics
D) The planet must have a molten interior
The principal sources of internal heat of terrestrial planets are

A) conduction and accretion
B) accretion and radioactivity
C) solar heating and eruption
D) solar heating and radioactivity
The principal sources of internal heat of terrestrial planets are

A) conduction and accretion
B) accretion and radioactivity
C) solar heating and eruption
D) solar heating and radioactivity
$400 Question from Planets 1

What are the conditions necessary for a terrestrial planet to have a strong magnetic field

A) a molten metallic core only
B) fast rotation only
C) both a molten metallic core and fast rotation
D) both a molten core and rocky mantle
What are the conditions necessary for a terrestrial planet to have a strong magnetic field

A) a molten metallic core only
B) fast rotation only
C) both a molten metallic core and fast rotation
D) both a molten core and rocky mantle
$500 Question from Planets 1

Which of the following doesn’t have a major effect in shaping planetary surfaces? Mention the planets in which these processes occur.

A) impact cratering
B) volcanism
C) tectonics
D) erosion
E) magnetic field
$500 Answer from Planets 1

Which of the following doesn’t have a major effect in shaping planetary surfaces? Mention the planets in which these processes occur.

A) impact cratering
B) volcanism
C) tectonics
D) erosion
E) magnetic field
$100 \text{ Question from Planets 2}$

Order the planets by increasing density?

A) Saturn, Jupiter, Mars, Earth
B) Jupiter, Venus, Earth, Mercury
C) Venus, Earth, Saturn, Jupiter
D) Mars, Earth, Saturn, Jupiter
$100 Answer from Planets 2

Order the planets by increasing density?

A) Saturn, Jupiter, Mars, Earth
B) Jupiter, Venus, Earth, Mercury
C) Venus, Earth, Saturn, Jupiter
D) Mars, Earth, Saturn, Jupiter
$200 Question from Planets 2

Which planet has a ring system?

A) Jupiter
B) Saturn
C) Uranus
D) Neptune
E) all of the above
Which planet has a ring system?

A) Jupiter
B) Saturn
C) Uranus
D) Neptune
E) all of the above
$300 Question from Planets 2

According to our theory of solar system formation, why do all the planets orbit the Sun in the same direction and nearly in the same plane?

A) the original nebula happened to be disk-shape by chance
B) any planet that orbited in the opposite direction or a different plane were ejected from the solar system
C) the laws of conservation of energy and angular momentum ensure that any rotating, collapsing cloud will end up as a spinning disk
D) the sun formed fist and as it grew in size it spread into a disk
According to our theory of solar system formation, why do all the planets orbit the Sun in the same direction and nearly in the same plane?

A) the original nebula happened to be disk-shape by chance
B) any planet that orbited in the opposite direction or a different plane were ejected from the solar system
C) the laws of conservation of energy and angular momentum ensure that any rotating, collapsing cloud will end up as a spinning disk
D) the sun formed fist and as it grew in size it spread into a disk
$400 Question from Planets 2

What is the primary component of the atmospheres of Venus, Mars, Earth and Titan

A) Venus (sulfuric acid), Mars (CO2), Earth (oxygen), Titan (Nitrogen)
B) Venus (sulfuric acid), Mars (CO2), Earth (nitrogen), Titan (nitrogen)
C) Venus (CO2), Mars (CO2), Earth (oxygen), Titan (nitrogen)
D) Venus (CO2), Mars (CO2), Earth (nitrogen), Titan (nitrogen)
What is the primary component of the atmospheres of Venus, Mars, Earth and Titan

A) Venus (sulfuric acid), Mars (CO2), Earth (oxygen), Titan (Nitrogen)
B) Venus (sulfuric acid), Mars (CO2), Earth (nitrogen), Titan (nitrogen)
C) Venus (CO2), Mars (CO2), Earth (oxygen), Titan (nitrogen)
D) Venus (CO2), Mars (CO2), Earth (nitrogen), Titan (nitrogen)
500 Question from Planets 2

Which of the following is not due to tidal forces?

A) the synchronous rotation of the Moon around Earth
B) the volcanous of Io
C) the rings of Saturn
D) the possible liquid ocean in Europa
E) the heavily cratered surface of Callisto
Which of the following is not due to tidal forces?

A) the synchronous rotation of the Moon around Earth
B) the volcanous of Io
C) the rings of Saturn
D) the possible liquid ocean in Europa
E) the heavily cratered surface of Callisto
Most asteroids are found:

A) beyond the orbit of Neptune
B) between the Earth and the Sun
C) between the orbits of Mars and Jupiter
D) in the orbit of Jupiter, but 60 degrees ahead of it or behind it
Most asteroids are found:

A) beyond the orbit of Neptune
B) between the Earth and the Sun
C) between the orbits of Mars and Jupiter
D) in the orbit of Jupiter, but 60 degrees ahead of it or behind it
Which planet has a ring system?

A) Jupiter
B) Saturn
C) Uranus
D) Neptune
E) all of the above
Which planet has a ring system?

A) Jupiter
B) Saturn
C) Uranus
D) Neptune
E) all of the above
$300 Question from Planets 3

Conservation of angular momentum means that a spinning body tend to

A) fly apart
B) slow down
C) keep spinning
D) gravitationally collapse
Conservation of angular momentum means that a spinning body tend to

A) fly apart
B) slow down
C) keep spinning
D) gravitationally collapse
The Dynamo Theory holds that

A) lightning plays a major role in generating magnetic fields
B) magnetic fields are generated by rapidly spinning, fluid magnetic interiors
C) the Earth magnetic field must switch polarities every few million years
D) the Earth’s core, like Mercury’s, is now a solid, rigid bar magnet
The Dynamo Theory holds that

A) lightning plays a major role in generating magnetic fields
B) magnetic fields are generated by rapidly spinning, fluid magnetic interiors
C) the Earth magnetic field must switch polarities every few million years
D) the Earth’s core, like Mercury’s, is now a solid, rigid bar magnet
What are the major factors that rule out the co-formation theory for the Moon and Earth?

A) Each body has different atmospheric content and a different density
B) Each body has different surface features and different atmospheric content
C) Each body has different chemical composition and different surface features
D) Each body has a different density and a different chemical composition
What are the major factors that rule out the co-formation theory for the Moon and Earth?

A) Each body has different atmospheric content and a different density
B) Each body has different surface features and different atmospheric content
C) Each body has different chemical composition and different surface features
D) Each body has a different density and a different chemical composition